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Empirical analyses show that after the update of a browser, or the publication of the vulnerability of a
software, or the discovery of a cyber worm, the fraction of computers still using the older browser or software
version, or not yet patched, or exhibiting worm activity decays as a power law �1 / t� with 0���1 over a
time scale of years. We present a simple model for this persistence phenomenon, framed within the standard
priority queuing theory, of a target task which has the lowest priority compared to all other tasks that flow on
the computer of an individual. We identify a “time deficit” control parameter � and a bifurcation to a regime
where there is a nonzero probability for the target task to never be completed. The distribution of waiting time
T until the completion of the target task has the power law tail �1 / t1/2, resulting from a first-passage solution
of an equivalent Wiener process. Taking into account a diversity of time deficit parameters in a population of
individuals, the power law tail is changed into 1 / t�, with �� �0.5,��, including the well-known case 1 / t. We
also study the effect of “procrastination,” defined as the situation in which the target task may be postponed or
delayed even after the individual has solved all other pending tasks. This regime provides an explanation for
even slower apparent decay and longer persistence.
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I. INTRODUCTION

There is growing evidence that remarkably robust quanti-
tative and sometimes universal laws describe the behavior of
humans in society. Consider a typical individual, who is sub-
jected to a flow of information and requested tasks, in the
presence of time, energy, regulatory, social, and monetary
constraints. Such an individual will respond by a sequence of
decisions and actions, which themselves contribute to the
flow of influences spreading to other individuals. A recently
developed approach to unravel at least a part of this complex
ballet consists in quantifying the waiting time distribution
between triggering factor and response performed by hu-
mans, which has been found in many situations to be a
power law pdf�t��1 / tp with an exponent p less than 2. As a
consequence, the mathematical expectation of the waiting
time between consecutive events is infinite, which embodies
the notion of a very long persistence of past influences. This
power law behavior has been documented quantitatively for
the distribution of waiting times until an email message is
answered �1�, for the time intervals between consecutive
emails sent by a single user and time delays for email replies
�2�, for the waiting time between receipt and response in the
correspondence of Darwin and of Einstein �3�, and for the
waiting times associated with other human activity patterns
which extend to web browsing, library visits, and stock trad-
ing �4�.

A related measure concerns the rate of activity following
a shock, a perturbation, an announcement, and so on that
impacts a given social system. For instance, measures of me-
dia coverage after a large geopolitical event decay approxi-

mately as a power law of time since the occurrence of the
event �5�. The rate of downloads of papers from a website
after a media coverage also follows a power law decay �6,7�.
The rate of book sales following an advertisement or large
media exposition decays as a power law of the time since
that event �8,9�. The rate of video views on YouTube decays
also as a power law after peaks associated with media expo-
sure �10�. Reference �11� argues that many other systems are
described by a similar behavior.

These two measures of human reactions, �i� distribution
of waiting times between triggering factor and response and
�ii� rate of activity in response to a “shock,” are related. This
fact has been exemplified by the rate of donations following
the tsunami that occurred on December 26, 2004 �12�. A
donation associated with this event can be considered as a
task that was triggered �but not necessarily executed� on that
day simultaneously for a large population of potential do-
nors. This task competes with many others associated with
the jobs, private lives, and other activities of each individual
in the entire population. The social experiment provided by
the tsunami illustrates a general class of experiments in
which the same “singular task” is presented at approximately
the same time to all potential actors �here the donors�, but the
priority value of this singular task can be expected to be
widely distributed among different individuals. Since the sin-
gular task has been initiated at nearly the same time for all
individuals, the activity �number of donations� at a time t
after this initiation time is then simply equal to N�pdf�t�,
where N is the number of individuals who will eventually act
�donate� in the population and pdf�t� is the previously de-
fined distribution of waiting times until a task is executed.

These observations have been rationalized by priority
queuing models that describe how the flow of tasks falling
on �and/or self-imposed by� humans are executed using pri-
ority ranking �2–4�. Assuming that the average rate � of task
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arrivals is larger than the average rate 	 for executing them
and using a standard stochastic queuing model wherein tasks
are selected for execution on the basis of random continuous
priority values, Grinstein and Linsker �13� derived the exact
overall probability per unit time, pdf�t�, that a given task sits
in the queue for a time t before being executed

pdf�t� �
1

t3/2 , for 	� � . �1�

Grinstein and Linsker �14� showed that the distribution �1� is
independent of the specific shape of the distribution of pri-
ority values among individuals. The value of the exponent
p=3 /2 is compatible with previously reported numerical
simulations �2–4� and with most but not all of the empirical
data.

Our present theoretical study can be considered both as a
pedagogical simplification and an extension of Grinstein and
Linsker �13,14�, with the goal of exploring different mecha-
nisms explaining the deviations of the exponent p from its
canonical value 3/2. In particular, we reveal the fundamental
statistical origin of the power law �1� with exponent 3/2 as
nothing but a first-passage problem of an underlying random
walk �15�. The initial motivation for the present study came
from recent quantitative empirical studies �16,17,19� on the
time decay of the use of outdated browsers on the internet
and of the remaining detectable and surprisingly significant
activity on the internet of the Blaster worm since 2003 up to
present �18,19�. The activity in these systems reveals the
equivalent of the survival distribution of browsers or of com-
puters which have not yet been updated or patched �in the
language of priority tasks, this is the fraction of all entities
which have not yet accomplished the task�. These activities
are found to decay as �1 / t�, with �� p−1, where the ex-
ponent is one unit less than for pdf�t� since it describes the
decay of the complementary cumulative �also known as the
survival� distribution of entities that have not yet acted. The
new element is that � is found to be different from 1/2,
sometimes smaller, while it is larger in other cases. Here, we
ask what could be the simplest explanations for such behav-
iors.

The structure of the paper is as follows. Section II pre-
sents the model of a target task which has the lowest priority
compared to all other tasks that flow on the “shoulders” �or
computer� of an individual. The distribution of waiting time
T until the completion of the target task is formulated as a
first-passage time of an approximately equivalent Wiener
process with drift. There is a control parameter, which we
call the “time deficit” parameter �, that is proportional to the
drift of the associated Wiener process. It is proportional to
the difference between the average time �
� to complete a
nontarget task and the average time interval ��� between non-
target task arrivals: �� �
�− ���. For small �’s, the probabil-
ity density function �pdf� q�t� of T has a power law tail
1 / t1+�, with exponent �=1 /2. Its corresponding complemen-
tary cumulative distribution Q�t� exhibits a bifurcation as a
function of �. For ��0 but close to 0, Q�t��1 / t� and tends
to zero at long time. For �0, Q�t��Q�+C / t�, where Q� is
the nonzero probability that the target task is never com-
pleted. Section III extends the preceding analysis to a popu-

lation of individuals with different time deficit parameters �.
We distinguish between regular distributions around �=0
and nonregular ones. For the former, the exponent � is
changed into the value 1 by the effect of heterogeneity. For
distributions of � that allow for positive values, the survival
distribution Q�t� exhibits again a nonzero asymptotic limit at
large times. For nonregular distributions of �, the exponent �
is found to be continuously tunable from 1/2 to +�. Section
IV introduces the mechanism of “procrastination,” defined as
the situation in which the target task may be postponed or
delayed even after the individual has solved all other pending
tasks. In the limit where the procrastination inclination is
large and the time deficit parameter is close to zero, we find
that the pdf q�t� of T exhibits a new much slower power law
tail �1 / t1−�, with �=1 /2 in the regular case. The survival
distribution Q�t� is characterized by a slow crossover to the
asymptotic power law �1 / t�. Section V concludes.

II. MODEL AND STANDARD SOLUTIONS

A. Formulation in terms of a specific target task
with the lowest priority

Let us assume for definiteness, but without loss of gener-
ality, that the target task is identified at the origin of time t
=0. For concreteness, we will frame our discussion by using
the examples of the task of updating your browser version on
your computer to the newly available version. Another ex-
ample is the task of patching a software after its vulnerability
has been disclosed and its patch has been made freely avail-
able. Our goal is to derive the distribution of waiting times
or, equivalently, the dependence with time of the fraction of
the population that has not yet performed the task.

Starting with the classical theory of a prioritized queue,
we assume that the target task has the lowest priority among
all other user’s tasks. In other words, the users consider up-
dating their browser or patching their softwares as doable
only after all their other tasks have been addressed. This
captures the casual empirical observation that computer users
are often reluctant to interrupt their work, social chatting and
blogging, games, and other activities on their computer for
an update or patch that often requires a complete shutdown
and restart.

The time at which the target task is performed is denoted
T: it corresponds to the time interval over which the user has
been busy doing other things. We therefore refer to it as the
“busy time duration.” By definition of T, for any t� �0,T�,
there are still other unsolved tasks that requires the attention
of the individual, while at the instant t=T, all tasks that arose
earlier have been solved. In the present section, we assume
that, once freed of other preoccupations at time T, the indi-
vidual who has been presented with the target task at t=0
will finally perform it immediately. In Sec. IV, we investigate
another situation in which, once free of other constraints, the
user nevertheless procrastinates. Then, new tasks may appear
in the meantime, leading to further delays in the completion
of the target task. This procrastination mechanism leads to
new slower decay laws and interesting crossover regimes.
But, with the present assumption that the target task is ad-
dressed as soon as the user is free of other tasks, it holds true
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that the complementary cumulative distribution function Q�t�
of waiting times until the update of the browser coincides
with the probability that the busy time duration is larger than
the given instant t,

Q�t� = Pr	T t
 . �2�

We now analyze in detail the components contributing to
the busy time duration T. Consider first all the tasks which
were present before t=0 when the new target task was first
presented to the individual and which have not yet been
completed. Let us assume that a time 
0 is still needed after
t=0 to solve these tasks. Then, in the scenario in which no
new tasks occur, we have

Q�t� = Pr	
0  t
 . �3�

We consider now all the other scenarios in which new tasks
may fall on the shoulders of the individual after t=0. Spe-
cifically, let us assume that the number of such new tasks
grows with t according to some staircase function n�t�, which
increases by one unit at discrete occurrence times

0� T1 � T2 ¯ � Tn�t� � t . �4�

We denote the time needed by the individual to solve the kth
task as 
k. Then, by definition of the busy time duration T,
Q�t� is given by the probability of the chain of events
�k=0

n�t�Ak,

Q�t� = Pr	T t
 � Pr��
k=0

n�t�

Ak� , �5�

where

Ak = 
0 + W�k� − Tk+1  0 �6�

and

W�k� = �
i=1

k


i, W�0� = 0. �7�

In Eq. �6�, it is understood that Tn�t�+1� t
Expression �5� shows that the chain �k=0

n�t�Ak of events Ak
defined by Eq. �6� determines Q�t� completely. It is thus
important to have a detailed understanding of it. First, the
event with index 0 is nothing but

A0 � 
0  T1, �8�

which corresponds to the scenario in which the time 
0 that
the individual needs to solve all tasks stored up to t=0 is
larger than the time T1 at which the first new task appears
after the time t=0 when the target task was assigned. Since
the individual is still solving other tasks, she cannot perform
the target tasks before the arrival of the first new task at T1.
The event

A1 � 
0 + 
1  T2 �9�

represents the scenario in which the individual is still solving
the tasks that were not yet finished before t=0 or the new
task that appeared at time T1 when the second task occurs at
time T2. Again, the individual is busy until time T2 and can-
not address the target task. The set of events Ak for all k’s up

to n�t� follows the same structure, so that the individual has
still not had time to address the target task at time t�T.
Figure 1 illustrates this chain �k=0

n�t�Ak of events.
We now introduce the auxiliary stochastic process

V�k� = �
i=1

k

�
k − �k�, V�0� = 0, �10�

where

�k = Tk+1 − Tk �11�

is the time interval separating the occurrence of the kth and
�k+1�th tasks arising after t=0. It is also convenient to de-
fine


0� = 
0 − T1 �12�

as the time needed to complete all tasks stored up to t=0
when the first new task occurs at time T10. The case 
0�
�0 is excluded as it would correspond to the completion of
the target task at time 
0 before the arrival of the first task at
time T1. In this case, all subsequent tasks become irrelevant.
We also assume for simplicity that 
0� is a fixed deterministic
value �we will relax this condition later on�, so that

Pr��
k=0

n�t�

Ak� = Pr�V�k� − 
0��, for any k � �0,n�t�� .

�13�

The sought complementary distribution Q�t� defined by ex-
pression �5� is therefore given by

Q�t� = Pr	V�k� − 
0�:k � �0,n�t��
 . �14�

Figure 2 shows a typical realization of the stochastic process
V�k� defined by expression �10� over a time interval in which
the inequality V�k�−
0� defining Q�t� in Eq. �14� holds.

B. Approximation in terms of a Wiener process
(random walk) with drift

We assume that the two sequences 	
k
 and 	�k
 are made
of independent identically distributed �i.i.d.� random num-
bers, with mean and variance, respectively, equal to �
�, �


2 ,
and ���, ��

2. In order to obtain the asymptotical properties of
Q�t� given by Eq. �14� at large times t� ���, we apply the
law of large numbers �LLN� that justifies replacing the ran-
dom number n�t� in Eq. �14� by its mean,

n�t� � �n�t�� = �� t/��� , �15�

leading to the following asymptotically exact expression for
Q�t�:

Q�t� � Pr�V�k� − 
0�:k � �0,��� . �16�

0

ηη η η η0 1 2 n(t)-1 n(t)

T T T T t1 2 3 n(t)

FIG. 1. Schematic illustration of the chain of events �k=0
n�t�Ak,

leading to the occurrence of T t, where T is the “busy time dura-
tion” until the target task is performed.

EFFECTS OF DIVERSITY AND PROCRASTINATION IN… PHYSICAL REVIEW E 81, 016108 �2010�

016108-3



For large times and thus large �’s, the central limit theo-
rem �CLT� ensures that the process V�k� defined by Eq. �10�
can be interpreted as the discrete version of a Wiener process
with drift, with the following mean value and variance:

�V�k�� = k · ��
� − ����, Var�V�k�� = �2 · k, �2 = �

2 + ��

2.

�17�

Moreover, for ��1, we can replace V�k� by its continuous
limit, in the form of the standard Wiener process with drift,
depending on the continuous argument k. Accordingly, the
pdf f�v ;k� of the continuous stochastic process V�k� satisfies
the diffusion equation

� f�v;k�
�k

+ ��
� − ����
� f�v;k�

�v
=
�2

2

�2f�v;k�
�v2 , �18�

supplemented by the initial condition

f�k;0� = ��v� . �19�

Recall that f�v ;k�dv is the probability of finding V�k� be-
tween v and v+dv at “time” k.

From the theory of Wiener processes, and within the as-
ymptotically exact continuous limit just described, it follows
that the probability given Eq. �16� is given by

Q�t� = 
−
0�

�

f�v;��
0��dv , �20�

where f�v ;k �
0�� is the solution of the diffusion equation �18�
satisfying the initial condition �19� and the additional absorb-
ing boundary condition

f�v;k�
0���v=−
0�
= 0. �21�

The solution of the initial-boundary problem �18�, �19�,
and �21� is

f�v;k�
0�� = g�v − ��
� − ����k;k� − exp�−
2��
� − ����
0�

�2 �
�g�v − ��
� − ����k + 2
0�;k� , �22�

where

g�v;k� =
1

�2�k�
exp�−

v2

2�2k
� . �23�

Substituting expression �22� into Eq. �20� yields

Q�t� �
1

2�1 + erf�� + ��
�2�

� − e−2�� erfc�� − ��
�2�

�� ,

�24�

with the following notations:

� =

0�

�

, � =

�
� − ���
�

, � =
t

���
. �25�

The corresponding pdf is

q�t� � −
dQ�t�

dt
=

1

���
�

�2��3/2exp�−
��� + ��2

2�
� . �26�

In the analysis that follows, the key role played by the
parameter � defined in �25� warrants further interpretation.
Let us assume that the occurrence of new tasks at the times
	Tk
 defined by Eq. �4� is a Poisson flow with rate �. Simi-
larly, we assume that the completion of tasks at the times
	W�k�
 defined by Eq. �7� is also a Poissonian flow with rate
	. We thus have

��� = �� =
1

�
, �
� = �
 =

1

	
, �27�

where ��� is the mean time between arriving tasks and �
� is
the mean completion time of the tasks. Accordingly, the pa-
rameter � is equal to

� =
� − 1

��2 + 1
, where � = ��
� =

�

	
. �28�

When

��� = �
� ⇒ � = 0 ⇒ � = 1, �29�

the rate of new task arrivals is equal to the rate of solving
them. This balanced condition corresponds to a zero drift in
the associated Wiener process and plays a crucial role in the
generation of power laws in the distribution of waiting times.
When positive, the parameter � quantifies the “time deficit”
that is missing on average per task in order for the individual
to finally be able to complete the target task. For a negative
time deficit ���0�, the target task is almost surely performed
in finite time as we show below.

It is instructive to analyze separately the complementary
cumulative distribution Q�t� given by Eq. �24� and its corre-
sponding pdf q�t� of the waiting time for the target task to be
done �browser upgrade or software patched� given by Eq.
�26�. We will discuss different situations in which Q�t� and
q�t� are described by asymptotic power laws

0 20 40 60 80 100

0

k

V
(k

)

−η′
0

FIG. 2. �Color online� Typical realization of the stochastic pro-
cess V�k� defined by expression �10� as a function of the discrete
argument k indexing the successive tasks appearing after t=0 at
which the target task has been initiated. The realization shown here
obeys the inequality V�k�−
0� defining Q�t� in Eq. �14� over the
whole time interval shown.
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Q�t� � Q� + �−� ⇔ q�t� � �−�−1, �30�

where Q� may be nonzero in some interesting cases to be
discussed below.

C. Derivation of the power law pdf q(t) of waiting times
till the completion of the target task

We first rewrite the pdf q�t� given by Eq. �26� in a form
more convenient for its analysis. For this, we note that q�t� is
controlled by two characteristic scales

�� =
�2

2
, �� =

2

�2 . �31�

For definiteness, consistent with our previous assumption
that 
0� is constant, we take � �i.e., ��� to be constant. We
then explore the behavior of q�t� for different values of �
�i.e., ���. It is convenient to introduce the new variable

� =
�

��
=

2�

�2 �32�

and the parameter

� =���
��

=
1

2
�� . �33�

The dimensionless pdf

���;�� =
�2

2
�����q�t� �34�

takes the form

���;�� =
1

�3/2exp�−
��� + 1�2

�
� . �35�

The dependence of ��� ;�� as a function of � is qualita-
tively different for ��1 ������� and for ��1 �������.
For ��1, ��� ;�� does not exhibit any power law
asymptotic regime, not even in an intermediate domain of �.
In contrast, for

� � 1 ⇔
1

2
�� � 1, �36�

the pdf ��� ;�� possesses the intermediate power asymptotic
regime

���;�� � �−3/2, 1� �� �−2, �37�

which is replaced, for larger �, by the exponential decay

���;�� � �−3/2e−�2�. �38�

Note that the function ��� ;�� is simply the pdf of the first
return to the absorbing boundary condition defined in Eq.
�21� �the target task is performed� of the Wiener process with
drift with the characteristics �17� �15�. In the balanced case
�29�

� = 0 ⇒ �−2 = � ,

the power law �37� holds for any ��1.

Figure 3 illustrates the crossover of ��� ;�� from the in-
termediate power law asymptotic regime �37� and the expo-
nential tail �38� for three increasing values of the normalized
drift parameter �.

D. Derivation of the survival distribution Q(t) of waiting times
until the completion of the target task

The complementary cumulative distribution Q�t� given by
Eq. �24� can be rewritten in the following form, which is
more convenient for the analysis of its asymptotic behavior:

Q�t� � Q��;�� =
1

2�1 + erf�1 + ��
�� � − e−4� erfc�1 − ��

�� �� .

�39�

This allows us to show that the function Q�� ;�� has a quali-
tatively different behavior at �→� for �0 and for ��0.
This can be seen from the corresponding limits of Q�� ;��:

lim
�→�

Q��;�� = �Q���� , �  0

0, � � 0,
� Q���� = 1 − e−4�.

�40�

For �0, Q�t� tends to a strictly positive limit Q����0 as
�→+�. For ��0, Q�� ;�� tends to zero as �→+�. These
two limits have the following simple probabilistic interpreta-
tions. For �0, �
� ���: the average time needed to com-
plete a task is larger than the average interarrival times be-
tween new incoming tasks. As a consequence, there is
strictly positive probability Q����0 that the target task will
never be completed. In the language of the drifting Wiener
process with characteristics �17�, in the presence of a positive
drift, there is a finite probability Q���� for the Wiener pro-
cess to escape to infinity �the target task is never completed�

10
−1

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

ρ

κ
(ρ

)

β = 0.01

β = 0.05

β = 0.1

∼ ρ−3/2

FIG. 3. �Color online� Dependence of ��� ;�� given by Eq. �35�
as a function of � for three values of the normalized drift parameter
�=0.01;0.05;0.1. Dashed straight line corresponds to the pure
power law ��−3/2. The larger the value of �, the narrower the
interval in � for which the intermediate power asymptotic regime
holds.
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and a probability 1−Q���� for being captured at the absorb-
ing boundary defined in Eq. �21� �the target task is per-
formed�. In contrast, for ��0, �
�� ���: the individual will
almost surely complete the target task �update her browser or
patch her software� in finite time. Thus, for ��0, Q����
=0. Crossing the value �=0 is analogous to a phase transi-
tion or bifurcation characterized by the order parameter
Q���� varying as a function of the control parameter �: for
��0, the order parameter is zero and it bifurcates to a non-
zero value for �0.

Equation �39� expressed for the balanced case �=0 yields
the following power law asymptotic regime:

Q��;0� �
2

���
, � � 1, �41�

corresponding to the power law exponent �=1 /2 as defined
in Eq. �30�. For ����1, Q�� ;�� does not exhibit any power
law asymptotic regime, not even in an intermediate domain
of �. For ����1, the power law �41� holds as an intermediate
asymptotic regime in the interval

1� �� �−2. �42�

For ���−2, the intermediate power law asymptotic regime
�41� crosses over to an exponential decay converging to 0 for
��0 or to Q����0 given in Eq. �40� for �0,

Q��;�� �
1

�2���1/2exp�− 2� − �2��

+ �Q���� 0, �  0

0, � � 0.
� �43�

Figure 4 plots the dependence of Q�� ;�� as a function of �
for �=�0.001, which illustrates the qualitatively different
behavior of Q�� ;�� for �0 and for ��0.

III. DISTRIBUTIONS OF THE TIME DEFICIT
PARAMETER LEADING TO DIFFERENT

POWER LAW EXPONENTS AND REGIMES

A. Regular distribution of the normalized time deficit
parameter � around the origin

1. Qualitative justification of the form of the normalized
time deficit parameter �

As shown in the previous section, proximity to the bal-
ance condition �29� is essential for the power laws �37� or
�41� to hold over an intermediate asymptotic region suffi-
ciently large to be observable �at least over 1 to 2 decades in
time�. In the present theory, the time deficit parameter �, or
equivalently its normalized version �, is exogenously given.
In reality, � ��� embodies the interplay between the subtle
processes of task formation, prioritization, and the efforts
undertaken to solve the tasks that each individual continu-
ously adjusts. We conjecture that users of browsers and of
softwares adapt approximately but not exactly, of course, to
the balance condition �29�. This is done, for instance, by
being selective among the flow of tasks �by deleting needless
incoming emails or ignoring some superfluous tasks� and/or
by adapting the time allocated to solving tasks, so that the
mean time �
� needed to solve a given problem is approxi-
mately equal to the mean time interval ��� between subse-
quent arriving tasks. Suppose for instance that �
� ���. In
this case, the individual is not able to face the flow of incom-
ing tasks and a boundless number of tasks pile up, suggesting
a nonsustainable regime either for the computer or its user. In
the opposite case �
�� ���, the individual sits idle for a sig-
nificant fraction of her time. By enlarging the definition of
what is meant by “task” to include other activities, including
the recreational activities that arguably constitute a signifi-
cant part of the utility or pleasure driving individuals, it is
clear that the case �
�� ��� is not realistic as a sustained
regime. We also conjecture that the adjustment process lead-
ing to the convergence of ��� towards �
� and vice versa may
describe the general problem of task flow versus their solu-
tions, beyond the specific problem of browser update and
software patching discussed here, to encompass the general
balance of human activities. We thus believe that the results
presented here are of broader interest and may help under-
stand the general statistical properties of the time allocation
of humans.

Following these arguments, while individuals can be ex-
pected to adjust toward the balance condition �29�, it is un-
likely that all humans will do so accurately. Indeed, in many
systems subjected to noise in which state-dependent control
actions are performed, the control parameter never settles but
continues to fluctuate around the target parameter �20–22�.
Therefore, we propose that the population of browser and
software users can be described by a distribution of time
deficit parameters � ��� which is centered on 0. We thus take
into account the mentioned fluctuations by considering � as
random variable with some pdf ����. The idealized balance
condition �=0 is replaced by the more realistic mean bal-
ance condition
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FIG. 4. �Color online� Complementary cumulative distribution
Q�� ;�� for �=�10−3 as a function of the normalized waiting time
� for completing the target task, demonstrating the qualitatively
different asymptotic behavior of Q�� ;�� for �0 and for ��0.
Dashed straight line shows the asymptotic power law �41� corre-
sponding to the balanced case �=0.
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��� = 
−�

�

�����d� = 0. �44�

Assuming that � is some deterministic constant as above,
then the mean balance condition �44� is equivalent to

��� = 0. �45�

2. Derivation of the pdf q(t) for a Gaussian distribution
of the normalized time deficit parameter �

In order to obtain concrete quantitative predictions, let us
first consider that the pdf ���� of the random variable � is a
Gaussian law centered on 0 and with standard deviation �0,

���;�0� =
1

�2��0

exp�−
�2

2�0
2� . �46�

The idealized balance condition �=0 is recovered in the
limit �0→0 for which the Gaussian pdf �46� tends to the
Dirac function ����=����. With the choice �46�, the mean
balance condition �45� holds by construction.

Amazingly, it turns out that the fluctuations of the param-
eter �, which satisfy the mean balance condition ���=0,
drastically change the asymptotic form of the distribution
Q�t� and its associated pdf q�t�, compared to the idealized
case in which the balance condition �=0 holds exactly for
each individual at all times. Let us first analyze this effect on
the pdf of waiting times for the completion of the target task,
which is now given, in its normalized version by the
weighted average with respect to � of ��� ;�� given by Eq.
�35�

�̄��� = 
−�

�

���;������d� . �47�

Using the Gaussian distribution �46�, this yields

�̄��;�0� =
1

�3/2�1 + 2�0
2�

exp�−
2�0

2

��1 + 2�0
2��

� , �48�

which has the following asymptotic behavior:

�̄��;�0� �
1

�2��0

1

�2 � �−2, � � �0
−2. �49�

Thus, the exponent �, defined in Eq. �30�, changes from the
value �=1 /2 for the idealized balance condition into �=1 in
the presence of fluctuations of the time deficit parameter
from individual to individual and/or as a function of time.
The mechanism acting here is similar to the mechanism of
“sweeping of an instability” �23�, since the presence of a
distribution of time deficit parameters around the balance
condition �=0 indeed amounts to sweeping the control pa-
rameter � over its bifurcation point defined in Sec. II D. We
stress that this “renormalization” of the exponent � from the
value 1/2 to 1 is not sensitive to the details of the shape �46�
of the distribution of the time deficit parameter �. The single
essential feature is that ��� ;�0� goes to a constant for �
→0. For any distribution ��� ;�0� having this property of
going to a nonzero constant as �→0, the asymptotic tail �49�

holds. We will discuss in Sec. III B variations to this condi-
tions and derive the corresponding changes in the exponent
�.

For the specific form �46�, the above asymptotic result
�49� can be made more accurate as follows. For �0�1,
�̄�� ;�� represents the unique power law regime �49� with
exponent �=1. For �0�1, there is an additional intermedi-
ate asymptotic power law with exponent �=1 /2 in the inter-
val �analogous to Eq. �42��

1� �� �0
−2, �50�

which is followed beyond the crossover point ����0
−2 by the

power law �49� with exponent �=1. Figure 5 shows the de-
pendence of �̄�� ;�0� as a function of � given by expression
�48� for three different values of �0 that illustrate the inter-
mediate asymptotic regime with �=1 /2 and the tail
asymptotic regime with �=1.

3. Derivation of the survival distribution Q(t) for a Gaussian
and a semi-Gaussian distribution of the normalized

time deficit parameter �

In the presence of a distribution of time deficit parameters
�, the complementary cumulative distribution Q�t� of the
waiting time until the completion of the target task can be
written as

Q��;�0� =
1

�2��0


−�

�

Q��;��exp�−
�2

2�0
2�d� . �51�

Figure 6 plots of the dependence of Q�� ;�0� as a function
of � for various values of �0. For all nonzero values of �0,
one can observe that the asymptotic tail exhibits an upward
curvature, leading to a departure from the a priori expected
dependence Q�� ;�0���−1. Also the larger the value of �0,
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FIG. 5. �Color online� Dependence of the normalized pdf
�̄�� ;�0� given by expression �48� of the waiting times until the
completion of the target task as a function of the normalized time �
for �0=0.01;0.1;1. For the smaller values of �, one can observe
the intermediate asymptotic law ��−3/2 progressively crossing over
to the asymptotic power law tail ��−2.
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the slower the decay of Q�� ;�0�, which becomes even
slower than ��−1/2.

The origin of the contradiction between the well-defined
asymptotic power law �49� for the pdf and the behavior
shown in Fig. 6 stems from the existence of the transition
occurring at �0=0 above which Q�� ;�� acquires a nonzero
limit Q���� given by Eq. �40� at �→+�, as explained in Sec.
II D. Accordingly, the average complementary distribution
Q�� ;�0� exhibits the strictly positive limit

lim
�→�

Q��;�0� = Q̄���0� = 
0

�

Q�������;�0�d� . �52�

For the Gaussian distribution �46�, this limit is given by

Q���0� =
1

2
�1 − e8�0

2
erfc�2�2�0�� . �53�

Figure 7 shows the dependence of this limit Q���0� as a
function of �0. In the context of browser updating and soft-
ware patching, this predicts a regime in which an intermedi-
ate asymptotic law Q�� ;�0���−1 is followed by a slow
crossover to a positive plateau, corresponding to a finite frac-
tion of the population that never upgrades or patches.

In Sec. III A 1, we argued that individuals confronted
with a flow rate �1 / ��� of tasks and the desire to solve them
characterized by the average solution time �
� tend to adjust
��� towards �
� and/or vice versa. Here, let us consider the
possibility that ��� remains marginally smaller than �
� so
that tasks do not accumulate. Taking into account the hetero-
geneity of humans and the variability with time of their strat-
egy, this corresponds to changing the Gaussian distribution
�46� into the semi-Gaussian distribution

�−��;�0� = �0, �  0

� 2

�

1

�0
exp�−

�2

2�0
2� , � � 0.� �54�

The corresponding average complementary cumulative dis-
tribution of the waiting times until the completion of the
target task is

Q−��;�0� =� 2

�

1

�0


−�

0

Q��;��exp�−
�2

2�0
2�d� . �55�

Since the contributions of nonzero values of Q���0� are re-
moved by this specification of the distribution of �,
Q−�� ;�0� exhibits a well-defined asymptotic power law
��−1. Figure 8 shows the function Q−�� ;�0� as a function of
� for different �0 values and illustrates the crossover from
the power law ��−1/2 for ���0

−2 �condition �50�� to ��−1 at
large times �.

B. Nonregular distribution of the normalized time deficit
parameter � around the origin

The assumption of a Gaussian or semi-Gaussian pdf �46�
for the distribution of the normalized time deficit parameter
� is representative of the general class of distributions which
are regular close to the origin, i.e., converge to a nonzero
constant for �→0. As we showed in previous sections, it is
the regular behavior around �=0 which controls the tail of
the pdf and survival distribution of waiting times. It is there-
fore interesting to investigate the consequence of the exis-
tence of fewer or more probable deviations from the critical
value �=0. For instance, as mentioned in Sec. III A 1, if
individuals adjust their time deficit parameter �� �
�− ���
via state-dependent control actions, we can expect deviations
from the assumption that the fluctuations of � are smooth
around �=0. We capture such possibility by considering the
following asymptotic behavior of the distribution of �’s:
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FIG. 6. �Color online� Dependence of the averaged cumulative
distribution Q�� ;�0� as a function of the normalized time �. Solid
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�−��;�0��� � A��0,������, − 1� �� + �,

�→ − 0, �A��� . �56�

The case �=0 recovers the regime of Sec. III A. In order to
remove the impact of the supercritical domain �0 on the
survival distribution, we also assume here that all �’s are
negative. It is a simple matter to remove this condition and
recover a regime of nonzero asymptotic behavior for the sur-
vival distribution, as discussed in Sec. III A 3.

The corresponding pdf of the waiting time until comple-
tion of the target task is given by

�̄��;�0��� = 
−�

0

���;���−��;�0���d� . �57�

In order to determine its asymptotic behavior for large �’s, it
is sufficient to replace this expression by

�̄��;�0��� � A��0,��
−�

0

���;������d� , �58�

which, using Eq. �38�, yields

�̄��;�0��� � A��0,��
1

2
��1 + �

2
��−����−1,

���� = 1 +
�

2
, �→ � . �59�

Similarly, the survival distribution of waiting times is given
by

Q��;�0��� = 
−�

0

Q��;���−��;�0���d�� �−����. �60�

Since �� �−1,��, for �−�� ;�0 ��� to be normalized, formula
�56� shows that the exponent � can only take values in the
interval

�� �1

2
,�� . �61�

For instance, Dübendorfer et al. �19� reported a value �
=2 /3 for the decay of the fraction of computers that still
keep an outdated Firefox 2 browser. Within the present
framework, this corresponds to �=−2 /3, i.e., to a signifi-
cantly stronger concentration of � close to 0 than would be
expected from a semi-Gaussian distribution, for instance.

IV. THEORETICAL FORMULATION OF THE IMPACT OF
PROCRASTINATION: NEW POWER LAW REGIMES

In the previous sections, we have assumed that, as soon as
all other tasks are solved, the individual addresses without
delay the target task with the lowest priority that now comes
to the front. In the present section, we explore the conse-
quences of the different possibility that procrastination kicks
in so that the target task is postponed and delayed needlessly
due to carelessness or laziness or for some other reason.

A. Model and mathematical solution

Consider the flow of new tasks occurring at the times
given by Eq. �4� and the process V�k� defined in Eq. �10�. Let
us denote the times when V�k� touches the value −
0� from
above by tn �see Fig. 2� when the individual is freed from all
tasks except the final target task. The set 	tn
 are the begin-
nings of the time intervals in which the individual is free to
address the target task. Let N�t� be the random number of
such free moments in the time interval �0, t� and let us call

P�n;t� = Pr	N�t� = n
 �62�

the probability that the number of spare times in �0, t� is
exactly equal to n. We assume that the individual will pro-
crastinate in such a free moment with probability 0�z�1.
This is the probability of an individual not upgrading their
browser or not patching their software in one of their free
times. For simplicity, we consider z to be independent of the
duration of the free time interval. It would not be difficult to
consider alternative specifications dependent on the duration
of the free time interval but, for most reasonable versions,
the main result of the power law tails obtained below is not
modified. Assuming that procrastination is independent in
successive free time intervals, the probability that the indi-
vidual does not complete the target task until time t is given
by

Q�t,z� = Pr	T t
 = �
n=0

�

P�n;t�zn, �63�

where T is the waiting time until the target task is completed.
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normalized waiting time � until the completion of the target task.
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In order to calculate Q�t ,z� given by Eq. �63�, we need the
expression of P�n ; t�. For this, we relate it to the probability

F�t;n� = Pr	tn � t
 , �64�

which, for a given n, the random variable tn does not exceed
t. The relation between P�n ; t� and F�t ;n� is

P�n;t� = F�t;n� − F�t;n + 1� �n� 1�, P�0;t� = 1 − F�t;1� .

�65�

Expression �65� states that the number n of free intervals
occurring in �0, t� is determined by the condition that the nth
free time interval starts before t while the �n+1�th free time
interval starts after t.

Substituting Eq. �65� in relation �63� yields

Q�t,z� = 1 + �z − 1��
n=1

�

F�t;n�zn−1. �66�

It is more convenient to work with the pdf of the waiting
time until the completion of the target task, defined by
q�t ,z�=− �Q�t,z�

�t . From Eq. �66�, we obtain

q�t,z� = �1 − z��
n=1

�

f�t;n�zn−1, �67�

where

f�t;n� =
�F�t;n�

�t
�68�

is the pdf of the random variable tn, the beginning of the nth
free time interval.

As it should, the limit z=0 in Eq. �67� recovers the pdf
given by Eq. �24� of the waiting time until the completion of
the target tasks

q�t,0� = f�t;1� � f1�t� . �69�

The beginning time tn of the nth free interval can be written
as the sum of n waiting times

tn =  t1 + ¯ +  tn. �70�

The first waiting time  t1 is the duration of the time interval
starting at the inception time t=0 of the target task until the
individual is free to address the target task for the first time.
We denote its pdf as f1�t�. The other terms  t2 , . . . , tn quan-
tify the waiting times between successive beginnings of free
time intervals. They are independent identically distributed
random variables, with a common pdf, denoted f�t�. The ex-
pressions for f1�t� and f�t� are made explicit in Sec. IV D.
Then, the pdf of the sum �70� is equal to the n-times convo-
lution

f�t;n� = f1�t� � f�t� � ¯ � f�t�

n−1 times

.

�71�

The Laplace transform of f�t ;n� is thus

f̂�s;n� � 
0

�

f�t;n�e−stdt = f̂1�s� f̂ n−1�s� , �72�

where f̂1�s� and f̂�s� are, respectively, the Laplace transforms
of f1�t� and f�t�.

Applying the Laplace transform to both sides of equality
�67�, we obtain

q̂�s,z� = �1 − z� f̂1�s��
n=1

�

f̂ n−1�s�zn−1 =
�1 − z� f̂1�s�

1 − z f̂�z�
. �73�

As shown in Sec. IV D, the pdfs f1�t� and f�t� have in gen-
eral the following asymptotic power law form:

f1�t� � a1t−�−1, f�t� � at−�−1, t → � . �74�

This implies that their Laplace transforms have the following
asymptotic form:

f̂1�s� � 1 + ��− ��a1s�, f̂�s� � 1 + ��− ��as�, s → 0.

�75�

Substituting these last relations into Eq. �73� yields the
asymptotic form of q̂�s ,z�,

q̂�s,z� �
1

1 − !s�
, s → 0, �76�

where

! = − a��− ��
z

1 − z
�!  0� . �77�

B. Expression of the probability z of not completing
the target task in one of the free times

Let us denote the duration of the kth free interval, from
the beginning time tk to the arrival of the first new task, by
"k. Note that one cannot interpret "k as the duration of the
time interval during which the Wiener process V�t� remains
below the level −
0� because the formulation in terms of a
Wiener process has a sense only for V�t�−
0�. Actually, "k
has the simple interpretation of being the waiting time
counted from any arbitrary time until the occurrence of a
new task.

Consider the simple instance in which the tasks arrive
according to a Poisson flow with rate �, such that the pdf of
"k reads

��"� = �e−�". �78�

One can interpret 1 /� as the mean waiting time between task
arrivals. For the sake of clarity, let us also assume that the
probability of not performing the target task during a free
time is a decreasing exponential function of the duration "k
of that free interval

P�"� = e−�1". �79�

One can interpret 1 /�1 as the average “procrastination time.”
Expression �79� assumes that the individual decides to per-
form the target task during one of her free times according to
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a constant probability per unit time, i.e., according to another
Poisson process with rate �1. Averaging this probability over
the statistics of " yields the probability z that the target task
will not be performed during a given free time interval

z = 
0

�

P�"���"�d" = 
0

�

e−�1"�e−�"dz =
�

� + �1
. �80�

If �1��, i.e., if the arrival rate of new tasks is significantly
larger than the rate with which the individual fights her pro-
crastination, then the probability z of not performing the tar-
get task in a given free interval is close to unity. As we see
below, this regime z→1 is responsible for a much slower
decay of the pdf and the survival distribution of the waiting
times until the completion of the target task.

C. Derivation of the distribution of waiting times until
the completion of the target tasks in the presence

of pronounced procrastination (z\1)

It is well known �see, for instance, �24,25�� that the in-
verse Laplace transform of Eq. �76� is equal to

q�t,z� =
1

!1/��� t

!1/� ,�� , �81�

where ��y ,�� can be expressed as the weighted sum of ex-
ponential distributions

��y,�� = 
0

� 1

	
exp�−

y

	
�"�	,��d	 , �82�

with weights

"�	,�� =
1

�	

sin����
	� + 	−� + 2 cos����

. �83�

The corresponding complementary distribution is

K�y,�� � 
−�

y

��x,��dx = 
0

�

exp�−
y

	
�"�	,��d	 .

�84�

Expression �82� predicts the existence of the two regimes

��y,�� �
1

y1−� , for y � 1, and

��y,�� �
1

y1+� , for y � 1. �85�

This translates into

q�t,z� � !−1 1

t1−� , for t� !1/� and

q�t,z� � !
1

t1+� , for t� !1/�. �86�

Figure 9 plots the pdf ��y ,�� given by Eq. �82� for �=0.7
and confirms the existence of an intermediate asymptotic
power law regime q�t ,z��1 / t1−� for t�!1/�, which decays
much slower than in the absence of procrastination �z=0

leading to a small ! and to q�t ,z��1 / t1+��. The two regimes
can be observed in the data by taking the derivative as a
function of time of the fraction of remaining individuals who
have not yet solved the target task.

For �1��, we can approximate expression �80� by z=1
−
�1

� , so that ! given by Eq. �77� is approximately equal to
!=−a��−�� ��1

�1, i.e., it is proportional to the ratio of the
average “procrastination time” over the mean waiting time
between task arrivals. It is this ratio �

�1
that determines the

range of the intermediate asymptotic power law q�t ,z�
�1 / t1−�, which holds for t� �� /�1�1/�.

If we look directly at this fraction �K�y ,�� in normalized
units� of nonsolved target task, we do not find two clear
power law regimes, but rather a smooth crossover to the
asymptotic power law tail K�y ,���1 /y�, as shown in Fig.
10.

D. Derivation of the pdf of the waiting times �tk between
successive beginnings of free time intervals

Let us now justify the form �74� for the pdf f1�t� of  t1
and for the pdf f�t� of the other independent random vari-
ables  t2 , . . . , tn as defined in Eq. �70�. As we showed in
Sec. II, the pdf of  t1 coincides �in the Wiener process ap-
proximation� with the pdf for the Wiener process V�t� of first
touching the level −
0�

f1�t� =
�

����2��3/2exp�−
��� + ��2

2�
�, � =

t

���
. �87�

This has the form �74� with �=1 /2 when the time deficit
parameter � is close to zero.

The other random variables  t2 , . . . , tn are each the sum

of two independent contributions,  tk="k+  ̂tk, where �i� "k
is the duration of a free time interval, which has the same
distribution as that of the waiting time counted from any

arbitrary time until the occurrence of a new task and �ii�  ̂tk
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FIG. 9. �Color online� Plot of the pdf ��y ,�� given by Eq. �82�
as a function of the reduced variable y= t /!1/� for �=0.7. The two
dashed lines correspond to the intermediate asymptotic regime and
to the tail asymptotic law given by Eq. �85�.
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is a time similar to  t1 for the Wiener process V�t� of first
touching some new level. In order to specify further the

properties of this second contribution  ̂tk, we recall that the
pdf f1�t� of  t1 given by Eq. �87� depends on the parameter
�= 
�

�

defined in Eq. �25�, where 
0� is the time needed by the

individual to solve tasks that has been stored and �
 is the
standard deviations of the times 
k needed to solve the kth

task. The pdf f̂�t� of  ̂tk can be written as

f̂�t� = 
0

�

w���f1�t���d� , �88�

where the notation f1�t ��� makes explicit the dependence on
� in expression �87�. The integral in Eq. �88� is performed
over the random variable � weighted by its pdf w���, which
is determined as follows. The end of an interval which was
free of any task �except the target task that remains to be
addressed� is triggered by the occurrence of a new task that

takes priority over the target task and the pdf of the time
needed to solve it is #�
�, with mean and variance equal to
�
� and �


2 , as defined in Sec. II B. We thus have

w��� = �
#��
�� . �89�

To illustrate, suppose that #�
� is exponential, #�
�
=	e−	
, leading to �
=1 /	 and

w��� = e−�. �90�

Substituting Eqs. �87� and �90� into Eq. �88� yields

f̂�t� =
1

2���
exp�−

�2�

2
��� 2

��
− exp�−

�1 + ��2�

2
�

��1 + ��erfc� �1 + ����
�2

�� . �91�

It is straightforward to confirm that this pdf f̂�t� has the
asymptotic power law �74� with �=1 /2. Now, f�t� is the

convolution of the pdf ��"� and of f̂�t� and its tail is deter-

mined by that of f̂�t�, hence the form �74� with �=1 /2.

V. CONCLUDING REMARKS

We have developed a simple general framework to model
the distribution of waiting times between the triggering fac-
tor and the actual realization of a job, for the particular tasks
that are both important �sometimes even essential� but are
often considered low priority because they require interrupt-
ing the normal flow of work or life. Beyond the examples of
internet browser updates and software vulnerability patching
which initially motivated our interest in this question, we
suggest that our theory can apply to less quantifiable but
equally important questions such as the delay in implement-
ing important decisions in one’s life. While we recognize of
course the existence of additional important psychological
factors and social influences, our approach provides a simple
parsimonious starting point for a general theory of procras-
tination.
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